CS 245
Midterm Exam — Winter 2017

This exam is open book and notes. You can use a calculator and your laptop to access course
notes and videos (but not to communicate with other people). You have 75 minutes to complete
the exam.

Print your name:

Remember: you can get one point of extra credit until Tuesday night by filling out
the midterm course survey on Piazza!

The Honor Code is an undertaking of the students, individually and collectively:

1. that they will not give or receive aid in examinations; that they will not give or receive
unpermitted aid in class work, in the preparation of reports, or in any other work that is to
be used by the instructor as the basis of grading;

2. that they will do their share and take an active part in seeing to it that others as well as
themselves uphold the spirit and letter of the Honor Code.

The faculty on its part manifests its confidence in the honor of its students by refraining from
proctoring examinations and from taking unusual and unreasonable precautions to prevent the
forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic
procedures that create temptations to violate the Honor Code.

While the faculty alone has the right and obligation to set academic requirements, the students
and faculty will work together to establish optimal conditions for honorable academic work.

I acknowledge and accept the Honor Code.

Signed:

Problem | Points | Maximum
10
10
10
10
10
10

Total | | 60

DO | W I~

Problem 1 (10 points)

Consider a hard disk that has 500 GB of hard disk space. It has the following performance
characteristics:

(a)

5000 RPM rotation rate
200 cylinders, numbered from 1 to 200
Takes 1 + (7/20) milliseconds to move heads across 7 cylinders (e.g., from ¢ to ¢ + 7).

A constant transfer rate of 100MB/s on all tracks.

Calculate the average time taken to read a 1MB block from the hard disk. Assume that,
for an average read, the head travels half the cylinders and half a revolution. (A simpler
assumption than what we discussed in class.)

Average read time for hard disk (ms):

Consider a scenario where we use a single buffer to read 1MB blocks from this hard disk and
process the blocks. Assume it takes 15 milliseconds to process a single 1IMB block and the
time it takes to read the block from disk is given from part a. Estimate the amount of time
it takes to process 10 1MB blocks.

Time to read and process 10 1MB blocks (ms):

Consider an identical scenario as in part b, but suppose we use two buffers to improve
performance. Estimate the amount of time it takes to process 10 1MB blocks.

Time to read and process 10 1IMB blocks using 2 buffers (ms):

Suppose the 10 1MB blocks are contiguous on disk and therefore seek time and rotational
delay are negligible, and the disk head is already on the correct cylinder. Assuming the
double-buffer scenario from part (c), estimate the amount of the required to process 10 1MB
blocks.

Time to read/process 10 contiguous blocks with 2 buffers:

Problem 2 (10 points)

Suppose we have blocks of size 1024 bytes that we use to store fixed-length records. Each block
has a 32 byte header used to store information including the number of records in the block.

(a) Suppose we have records consisting of a 12 byte header, and 3 fields of size 5 bytes, 6 bytes
and 7 bytes respectively. Within each record, fields can start at any byte. How many records
can we fit in a block?

Number of records:

(b) Suppose that we have 3 records, each with a 12 byte header and 500 bytes of data.

(i) How many blocks will we need to store these 3 records if no spanning is allowed?

Number of blocks:

(ii) How much total free space is there in the blocks if no spanning is allowed? (Assume
we are not storing anything else)

Available space in bytes:

(iii) How many blocks will we need to store these 3 records if spanning is allowed? In
addition to the record header, each time a record is split into fragments, each fragment
needs an extra header of 12 bytes.

Number of blocks:

(iv) How much total free space is there in the blocks if spanning is allowed as in (iii)?
(Assume we are not storing anything else)

Available space in bytes:

(c) Now consider blocks of size 1024 bytes that we use to store variable-length records. Each
block has a fixed 32 byte header used to store information including the number of records
in the block. In addition to this fixed header, the header contains variable number of 2 byte
pointers to each record in the block. Records can start at any byte offset and are packed
as densely as possible. Which of these following combinations of records can be stored in a
single block? Circle all that apply.

(i) 32 records of 23 bytes each
(ii) 30 records of 20 bytes each and 10 records of 10 bytes each
(iii) 5 records of 11 bytes, 10 records of 13 bytes and 20 records of 17 bytes
)

(iv) 2 records of size 496

Problem 3 (10 points)

In this problem, if a B-+tree node needs to be split, the new node on the left should contain the
larger number of non-empty pointers. If a B-+tree node needs to coalesce with its sibling, coalesce
the node with its left sibling.

(a) Consider the following B+tree of with n = 3 keys per block (i.e., 3 record pointers per leaf, 4
node pointers per non-leaf node) . (We are using the textbook’s way of depicting B-+trees here.):

10140

1V
118 10|20 401701100
L1 Tl Tl L

We subsequently perform the following operations in order: insert 15, insert 30, insert 110, delete
30. Draw the tree after these operations.

Now consider a B+tree with 10 pointers per block and depth 5:

(b) If our minimum node fill factor is 5 record pointers or non-leaf child pointers, what is the
minimum number of record pointers the tree can contain?

(c) What is the maximum number of record pointers the tree can contain? Recall that each
leaf node has a next-leaf pointer, and, for this question, next-leaf pointers count towards the 10
pointers per block limit.

Problem 4 (10 points)

Consider relations R(A, B), S(B,C,D) and T'(C,D). The following sub-problems ask you to
rewrite relational algebra expressions. You can assume that the relations contain sets (not bags).
If the requested rewrite is not feasible, state so and briefly explain why. Also, make sure there are
no unneeded expressions in your rewrite, e.g., 1cpT and o444 R are unneeded.

(a) State whether the following expression is feasible. If so, rewrite the following expression
(including the projection, if necessary) by pushing the projection as far down as possible:

WAD[O'ng,(R > S)]

(b) State whether the following expression is feasible. If so, rewrite the following expression so
it does not contain a union operator and contains one selection operator (instead of two):

(R (00—28)] U[(04—1 R) 4 5]

(c) State whether the following expression is feasible. If so, What is the minimum number of
operators required to express the query represented by the following expression?

op=2[(00=25) > (00=1T)]

(d) Give two reasons why pushing down selections can improve query execution speed. Give one
reason why pushing down projections can improve query execution speed.

Problem 5 (10 points)

Consider performing a natural join on two relations R(X,Y’) and S(Y, Z). Relation R has 30,000
records stored contiguously in blocks. One block of memory can hold 30 records from relation R.
Relation S has 5,000 records not stored contiguously in blocks. One block of memory can hold
25 records of relation S. There are 50 main-memory buffers.

Calculate the I/O cost for each of the following algorithms, using an analysis similar to the one
done in class. Ignore the I/O cost of writing the final join output to disk. Unless stated otherwise,
the records in the relations are not sorted.

(a)

Iteration Join Algorithm, R First: The algorithm reads 50 blocks of R into memory, then
reads all of S (1 record at a time) into memory, joining with R. This process is repeated
until all records are processed.

Number of IOs:

Merge Join: Assume R and S are not sorted. First sort R by Y using two-pass merge-sort,
writing all of the records in R into a sorted file. Then sort S by Y the same way. Finally,
perform a merge-join on the sorted relations. (Note: in this implementation, we do not apply
the optimization where we directly join the sorted runs in memory!)

Number of IOs:

Hash Join: We first hash records from R (using the Y attribute) into 50 buckets. (No R
buckets are kept in memory.) We then hash S into 50 buckets in a similar fashion. Then we
join each pair of Ri and Si buckets. Our hash function is (miraculously!) perfectly balanced,
and buckets are equally sized.

Number of I0s:

(d) Extra Credit (1 point): In class, we had discussed that for the hash join, the size of a bucket
needs to fit within main memory. Namely, (z/k) < m where x is the number of blocks in the
relation, k is the number of buckets, and m is the number of memory buffers (not including
the one used to read in from disk). In the scenario where the bucket size is too large, describe
a change to the hash-join algorithm to rectify this problem. Assume k is fixed to be m. You
may not simply increase k nor increase m.

Problem 6 (10 points)

State if the following statements are true or false. Please write TRUE or FALSE in the space
provided.

1. The first and second levels of a secondary index are dense.

ANSWER:

2. Using the notation from lecture: storing a hash table constructed via linear hashing requires
2! buckets.

ANSWER:

3. If we store our data in a columnar form (and without compression), then aggregating a
single column of integers from a relation with K integer columns (e.g., SELECT SUM(a) FROM
table;) stored on disk should execute approximately K times faster than executing the
same query over the data stored in row form.

ANSWER:

4. For range queries, merge join is always faster than iteration (nested loops) join.

ANSWER:

5. Given two relations R and S with indexes on their primary keys, the fastest way to join R
and S by primary key is by using iteration (nested loops) join.

ANSWER:

6. Using histograms for cardinality estimation always results in more accurate results than
simply using the full domain or distinct value assumptions in class.

ANSWER:

7. If we don’t use overflow blocks, increasing the number of bits used in extensible hashing by
one always doubles the directory size.

10

10.

ANSWER:

. Each primary key lookup in a B+tree containing N records and P pointers per node will

require logp(N) node traversals.

ANSWER:

. Each primary key lookup in a B-tree (not B-+tree) containing NN records and P pointers per

node will require logp(N) node traversals.

ANSWER:

LRU is a good replacement policy for caching B-tree nodes.

ANSWER:

11

